Documentation
Inertial Mechanics
Contents:
1. Software
1.1 Simulations
1.1.1 Python
1.1.1.1 Pendulum in Free Fall (See FreeFall.py)
$\quad J\ddot{\theta} = \tau -b\dot{\theta}-Mgl\sin(\theta)$
where $\tau= 0$
$\quad \ddot{\theta} = \tau-\frac{b}{J}\dot{\theta}-\frac{Mgl}{J}\sin(\theta)$
Then apply the small angle approximation
$\quad \ddot{\theta} = \tau-\frac{b}{J}\dot{\theta}-\frac{Mgl}{J}\theta$
State space expressions can be obtained
$\quad \left\lbrack\matrix{\dot{\theta} \cr \ddot{\theta}} \right\rbrack =
\left\lbrack\matrix{0 & 1 \cr -\frac{Mgl}{J} & -\frac{b}{J}} \right\rbrack
\left\lbrack\matrix{\theta \cr \dot{\theta}} \right\rbrack +
\left\lbrack\matrix{0 \cr 1} \right\rbrack \tau
$
$\quad y = \left\lbrack\matrix{0 & 1} \right\rbrack \left\lbrack\matrix{\theta \cr \dot{\theta}} \right\rbrack $
1.1.1.2 PD Control of Pendulum with Motor at Origin (See PD.py)
From the Equation of Motion:
$\quad \ddot{\theta} = \tau-\frac{b}{J}\dot{\theta}-\frac{Mgl}{J}\theta$
Add PD Control terms ($\theta$ defined from upward vertical direction)
$\quad \tau = K_{p}(\theta) + K_{d}(\dot{\theta})$
$\quad \ddot{\theta} = (K_{d}-\frac{b}{J}) \dot{\theta}+
(K_{p}-\frac{Mgl}{J})\theta$
$\quad \ddot{\theta} - (K_{d}-\frac{b}{J}) \dot{\theta}-
(K_{p}-\frac{Mgl}{J})\theta = 0$
Laplace Transfrom to obtain quadratic relation
$\quad \theta[s] (s^2- (K_{d}-\frac{b}{J}) s-(K_{p}-\frac{Mgl}{J})) = 0$
Identify roots
$\quad s = \frac{-(K_{d}-\frac{b}{J}) \pm \sqrt{(K_{d}-\frac{b}{J})^2 - 4(K_{p}-\frac{Mgl}{J})}}{2}$
To identify $K_{p}$ and $K_{d}$, select roots S and solve
1.1.1.3 Pendulum with Reaction Wheel (See RW.py)
See (Rigatos et. al., CYBER-PHYSICAL SYSTEMS, 2020) for more details
$\quad (M_{R}L_{R,CoM}^2 + M_{W}L_{W,CoM}^2 + J_{R} + J_{W})\ddot{\theta} +
(J_{W})\ddot{\phi} - (M_{R}L_{R,CoM} + M_{W}L_{W,CoM})g\sin(\theta) = 0 $
$\quad J_{R}\ddot{\theta} + J_{W}\ddot{\phi} = \tau $
1.1.1.3 Pendulum with Reaction Wheel LQR Control (See RW_LQR.py)
See (Rigatos et. al., CYBER-PHYSICAL SYSTEMS, 2020) for more details
$\quad (M_{R}L_{R,CoM}^2 + M_{W}L_{W,CoM}^2 + J_{R} + J_{W})\ddot{\theta} +
(J_{W})\ddot{\phi} - (M_{R}L_{R,CoM} + M_{W}L_{W,CoM})g\sin(\theta) = 0 $
$\quad J_{R}\ddot{\theta} + J_{W}\ddot{\phi} = \tau $